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Abstract
Although fruit fly host status determination/designation lies at the
heart of strategic decisions on national and international trade of
fruit and vegetables, all attempts thus far to define host plant sta-
tus have been contentious and as a result long-standing disputes
between commercial partners throughout the world have lingered
over decades. Part of the problem is that too little effort has been
devoted to understanding the underlying mechanisms involved in
host plant use by fruit flies and that instead economic and political
interests usually prevail. Here we review the most important evolu-
tionary, biological, ecological, physiological, and behavioral aspects
that drive host use by fruit flies, and then construct a flow diagram
rooted in these fundamentals that outlines a series of steps and def-
initions to determine if a particular fruit or vegetable (and cultivars
thereof) is a natural host, or a conditional (potential, artificial) host,
or a nonhost. Along the way, we incorporate risk analysis considera-
tions and propose that the underlying complexity determining host
plant utilization by fruit flies requires a flexible systems approach ca-
pable of realistically dealing with fly/host/environment/geographic
variability on a case-by-case basis.
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Systems approach:
integration of pre-
and postharvest
practices, from the
production of a
commodity to its
distribution and
commercialization,
that cumulatively
meet predetermined
requirements for
quarantine security

Natural host: fruit
or vegetable
unequivocally found
infested under totally
natural field
conditions (i.e.,
nothing is
manipulated)

INTRODUCTION

Fruit flies (Diptera: Tephritidae) are among
the most important pests worldwide because
of their direct economic impact (i.e., fe-
male oviposition and larval feeding render
fruit/vegetables unmarketable) and the strict
quarantine restrictions imposed by many
countries to curtail their entry (1, 31, 64).
A critical component when trying to assess
the risk of introductions into a country or
an entire region is the status of a given
fruit/vegetable species (and cultivars thereof )
as a host of a particular fruit fly species (3,
82). Given the underlying biological complex-
ity/conditionality of fruit fly host use and the
economic and political impact of the issue of
host plant status determination/designation
at the international level, there is an urgent
need for a solid conceptual and methodolog-
ical framework that can aid scientists, regula-
tory officials, policy makers, politicians, and
stakeholders throughout the world in solving
current and future disputes over the status of
particular plants as fruit fly hosts.

Here we analyze the causes of confusion
and complexity involving fruit fly host de-
termination and ultimately agricultural risk,
including, among others, (a) the evolution
of fruit fly/host plant relationships and the
behavioral mechanisms related to host find-
ing and utilization; (b) conditional infestation
based on the physiological (motivational) state
of the fly; and (c) conditional infestation based
on the state of the host. We propose that the
underlying complexity/conditionality that de-
termines host ranges requires a flexible sys-
tems approach capable of realistically dealing
with fly/host/environment/geographic vari-
ability on a case-by-case basis. We construct
a flow diagram (Figure 1) that proposes a
series of steps and definitions to determine
if a particular fruit or vegetable (and culti-
vars thereof ) is a natural host, or alternatively
(non-natural host), if it should be considered a
conditional (potential, artificial) host or a non-
host. We finish by outlining promising areas
of research that could help solidify a stream-

lined system designed to reach science-based
decisions on fruit fly host designations.

EVOLUTIONARY
CONSIDERATIONS OF HOST
USE BY TEPHRITID FLIES

Overview of Broad Patterns Involved

The evolutionary pathway leading to special-
ized herbivory is a complex one and the fac-
tors shaping host plant use are highly diverse,
with patterns spanning from extreme conser-
vatism (175, 182, and references therein) to
extreme plasticity (57, 58). Tephritid conser-
vatism is exemplified by the large subfamily
Tephritinae, which is almost exclusively asso-
ciated with plants within the Asteraceae (52).
But there is also evidence for rapid host range
evolution, with related insects attacking a wide
range of unrelated plants (7, 154).

In broad terms, two principal driving
forces guide host range evolution: phyto-
chemical coevolution between plants and her-
bivores (47) and selective pressure by gen-
eralist natural enemies (19, 22, 87, 158).
Which selective forces played a more impor-
tant role in the case of tephritid flies is open
to debate. Ancestral tephritids most proba-
bly evolved from a saprophagous to a phy-
tophagous lifestyle (43). Currently, most fruit
flies specialize in flowers and fruit structures
that frequently lack the plants’ characteristic
secondary chemistry (112). Furthermore, it
has been argued that domesticated fruit were
selected on the basis of their low toxicity to
vertebrates (84) and that artificial selection
for increased human palatability also low-
ered the levels of chemical defenses in com-
mercially grown fruit (80). Additionally, Fitt
(58) pointed out that as fruit ripen, defen-
sive compounds disappear. Conversely, some
fruit fly species feed on seed tissue that may
be more toxic than the pulp, and in the case
of pulp, there is evidence that some fruit re-
main highly toxic to larvae (see below). For
example, in the case of flies within Anastrepha,
primitive species such as A. cordata, A. hamata,
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Field cages with entire fruit-bearing trees

Enclosed fruit-bearing branches

Laboratory cages

Monophagous

Stenophagous

Oligophagous

Polyphagous

Univoltine

Multivoltine

Poor

Good

Natural factors

Natural host

Bioassays under
forced artificial

conditions

Life cycle completion  Inability to
complete
life cycle

  No quarantine
action needed,
but screening

to detect
mutations

recommended

Additional
field

research

Risk analysis
and systems

approach

Quarantine
treatment

Additional
field

research

Risk analysis
and systems

approach

Economic,
political,

and
regulatory
concerns

Nonhost

Conditional host
(potential or artificial)

Monitoring of adult populations
and extensive field sampling

to gather evidence of
natural field infestation

Evolutionary background,
life history, ecology, behavior,

physiology, and biogeography  

Non-natural host

Quarantine
treatment

Monitoring/risk analysis factors

Manipulated conditions

Economic/political / regulatory
implications

Research events

Trade restrictions

No fertile adult development

Figure 1
Flow chart indicating proposed steps for fruit fly host status determination/designation. The entire
approach is rooted in the fundamentals of the system, i.e., the evolutionary background of host plant
associations, life-history parameters, ecology, physiology, and most importantly behavior. When
quarantine systems are based on a systems approach, the entire system should be continuously evaluated
by resampling and reanalyzing the components to improve security.

A. crebra, and their closely related relatives
(flies in the sister group Toxotrypana) spe-
cialize on seeds or associated tissue of and
attack latex-producing plants (e.g., Apocy-
naceae, Asclepiadaceae, and Sapotaceae). In
contrast, some derived species (e.g., fratercu-
lus group) feed almost exclusively on fruit pulp
and are highly polyphagous (7, 9). Species
such as A. ludens (also within the highly de-
rived fraterculus group) have retained the abil-
ity to feed on both types of substrates (9).

The other argument, that host ranges evolve
because of the selective advantages of mov-
ing to hosts that provide shelter from natu-
ral enemies, has not been formally tested, al-
though Feder (53) provided evidence that, at
least in the case of the apple maggot (Rhago-
letis pomonella), a shift from native hawthorns
to introduced apples did allow the frugivore
to gain enemy-free space.

According to Zwölfer (182) fruit flies arose
in the middle Tertiary (at least by the early
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Diet breadth:
determined by
number of species of
plants included in an
insect’s diet

Conditional host: a
host plant
unequivocally not
found infested in the
field but that can be
infested under
manipulated
conditions (also
called potential or
artificial host).

Miocene), which means that tephritid fly–
host plant associations began at least 20–
25 mya. For example, the highly publicized
rapid sympatric host shift of R. pomonella
[it shifted from its ancestral host Crataegus
spp. to introduced apples (Malus domestica) in
northeastern United States in the late 1800s]
was made possible by chromosomal inver-
sions affecting key diapause traits occurring
in Mexico approximately 1.75 mya and that
subsequently introgressed into the United
States (54). Inversion polymorphism that gen-
erated variation in diapause schedules facil-
itated synchronization with the fruiting pe-
riods of the novel host (apples fruit earlier
than hawthorns) (54). In addition, mutations
were needed to allow females to recognize
the signature odors of the new host (68). We
note, however, that host shifts can also occur
at a much faster pace. Observational and ex-
perimental studies on individual oviposition
decisions and models such as the hierarchy-
threshold model (35) have shown that indi-
viduals can shift hosts during a lifetime (70,
72, 154).

Resource Exploitation Strategies
and Diet (Host) Breadth

We adopt the classification by Zwölfer (183)
with respect to the resource-exploitation
strategies exhibited by pestiferous tephritids:
(a) opportunistic, broad-range exploiters (e.g.,
Anastrepha, Bactrocera, and Ceratitis) of pulpy
fruit that are multivoltine (Figure 1) and very
mobile, and that exhibit high reproductive po-
tential, no diapause, and little synchronization
between adult emergence and host fruiting
phenology; and (b) specialized exploiters (e.g.,
Rhagoletis) of pulpy fruit that are mainly uni-
voltine (Figure 1), exhibit long diapause pe-
riods in the soil, and closely synchronize their
emergence with that of the fruiting phenology
of their hosts.

With respect to diet breadth, tephritid
flies can be placed within the following four
categories: monophagous, stenophagous, oli-
gophagous, and polyphagous (60) (Figure 1).

According to May & Ahmad (109) monoph-
agous insects strictly feed on plants of only one
species, oligophagous insects are restricted to
a single plant family, and polyphagous insects
feed on plants of many families and even or-
ders. We find it useful to add the stenophagous
category considered by Fletcher (60), which
we define as species feeding on plants within
one genus. Diet breadth in insects has both in-
creased and decreased over evolutionary time
(20) and therefore should be treated as a con-
tinuum (20, 79). Most species of tephritid flies,
as is the case with most phytophagous insects,
tend to have narrow host ranges (i.e., special-
ists) (87). In the case of highly polyphagous
species, the issue needs to be analyzed at the
species, population, and individual level be-
cause these types of insects exhibit a great
degree of variability in their host use pat-
terns (30, 40, 117). Importantly, among nat-
ural or conditional hosts, not all are equally
preferred or suitable for development (poor
to good host gradient noted in Figure 1) (8,
26, 28, 95, 100), and even among nonhosts,
some are acceptable under particular condi-
tions. The latter led Hanson (79) to conclude
that the boundary between host and nonhost
should be drawn in the field (i.e., at the eco-
logical level): “Host plants are those on which
the animal completes normal development in
nature.”

Classifications such as those listed above
may be misleading owing to local feeding
adaptations. Fox & Morrow (67) indicated
that “many herbivorous insects have general-
ized diets over the species’ entire geographi-
cal ranges but they function as specialists with
restricted diets in local communities.” For ex-
ample, in the case of the highly polyphagous
Ceratitis capitata, Jones (91) discovered that ac-
uleus morphology of several host-associated
populations found in South Africa was re-
lated to physical characteristics of their hosts.
Among the populations he studied, aculeus
width decreased as host cuticle thickness in-
creased, suggesting that individual popula-
tions remained associated with one host fruit
species for many generations.
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Constraints Limiting Diet (Host)
Breadth

Although it is assumed that female oviposi-
tion decisions correspond with optimal host
suitability for offspring development (18), this
is not always the case (43, 143, 164). There
are cases in which females lay eggs in unsuit-
able hosts (usually referred as mistakes, but see
References 98, 110) or in which they do not
lay eggs in plants (fruit) on which larvae are
able to develop (57, 58). Such inconsistencies
may be due to phylogenetic constraints that
limit the potential behaviors and life-history
strategies that can evolve (69, 128). In the case
of fruit flies, we refer to the suite of recep-
tors essential in finding hosts or recognizing
surface chemicals which are constrained by
the insect’s anatomy, which is in turn con-
strained mostly by phylogeny (i.e., charac-
ters bequeathed by ancestors). Another good
example of a constraint is aculeus morphol-
ogy and associated sensilla (160). There are
species with short and pointed (e.g., C. capi-
tata), short and serrated (e.g., A. fraterculus),
and long and pointed (e.g., A. ludens) aculei
(91). Such characteristics may determine the
type of fruit or vegetables females are able to
attack (e.g., soft versus thick skinned) or the
type of chemical barriers they can circum-
vent (23, 41). Among the economically im-
portant fruit fly genera, there is a discernible
gradient when comparing aculeus length: flies
within Toxotrypana and Anastrepha have the
longest and flies within Bactrocera, Ceratitis,
and Rhagoletis have the shortest (91).

Another type of genetic constraint limit-
ing or biasing the evolution of host associ-
ations is represented by the lack or paucity
of genetic variation. According to Futuyma
et al. (71), such a constraint may lead to avoid-
ance of rather than adaptation to novel plants.
Price (128) further postulated that there are
“adaptive syndromes” that “are evolutionary
responses to the phylogenetic constraints that
minimize the limitations and maximize lar-
val performance.” Use of occupied hosts (e.g.,
reuse of previous oviposition punctures) or

Phylogenetic
constraints: old
characters in the
phylogeny of a
species that can limit
the sorts of behaviors
that can evolve

fruit wounds is a good example of an adaptive
syndrome in the case of fruit flies. For exam-
ple, C. capitata females, which are constrained
by a short aculeus, commonly use previous
oviposition holes [i.e., holes left by another
conspecific or the female of another species
(121)] and crevices in the epicarp (epidermis)
of damaged fruit caused by bird pecks (129),
or they lay eggs in ripe fruit that have senesced
to the point where toxic oils or allelochemi-
cals have disappeared, allowing eggs to hatch
and larvae to develop (77).

Yet another adaptive syndrome with a
phylogenetic basis leading to differences in
host breadth might be derived from the rela-
tive neural capacities of various tephritid lin-
eages. According to Bernays (21), “the evo-
lution of diet breadth in herbivorous insects
is constrained by a limited neural ability to
efficiently process large amounts of infor-
mation in short periods of time.” On the
basis of this “neural-constraints hypothesis”
(66, 99) and also the “loose receptor hy-
pothesis” (162), highly polyphagous fruit flies
such as C. capitata or Bactrocera tryoni would
be less efficient in discriminating among a
wide array of volatiles and surface chemicals
when compared with a monophagous species
such as Anastrepha alveata. Work by Fitt (57)
lends support to these hypotheses. This au-
thor compared five species of Bactrocera that
differed in host breadth [i.e., monophagous
(B. musae and B. cacuminata), oligophagous (B.
cucumis), and polyphagous (B. tryoni and B.
jarvisi)] and in the extent to which they had
shifted to exotic fruit. Under laboratory con-
ditions, larvae of all species survived and de-
veloped in many cultivated fruits in which the
specialist species never occur in the field. Fe-
males of the monophagous species would not
oviposit in the novel fruit even in the absence
of the natural host. In contrast, the highly
polyphagous species would lay eggs in almost
any fruit. Fitt (58) concluded that “the occur-
rence of these Dacus species [currently Bactro-
cera] in cultivated fruits is constrained more
by the behavioural preferences of adult fe-
males than by larval specializations. A genetic
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Host quality:
characteristics of a
host (usually a fruit)
evaluated by a female
prior to the act of
oviposition

change in some aspect of host recognition or
acceptance would be necessary for the special-
ist species to regularly infest cultivated fruits
though no change in larval characteristics may
be needed.”

BEHAVIORAL ASPECTS
RELATED TO FRUIT FLY HOST
ASSOCIATIONS

The Catenary Process Involved
in Host Finding and Utilization

Hassel & Southwood (81) postulated that a
foraging insect perceives the environment at
three hierarchical levels: habitat, patch, and
food item. A discussion of critical habitat and
patch characteristics influencing fly behav-
ior can be found in References 2, 5, 6, 134,
and 155. Writing on parasitic Hymenoptera,
Doutt (45) divided the catenary (i.e., step
by step) process of successful parasitism into
host-habitat location, host finding, host ac-
ceptance, and host suitability. Vinson (173)
then added a fifth component: host regula-
tion. According to the rolling fulcrum model
of Miller & Strickler (111), in this catenary
process there is a complex interplay of external
and internal excitatory and inhibitory inputs
that lead an insect to engage or not engage in
a particular behavior (e.g., oviposit).

What are the most critical factors at play
during the catenary process that lead to the
eventual acceptance of a host by a gravid fe-
male fruit fly? At the habitat and patch level,
visual cues such as plant color, silhouette of
tree against the sky (shape), size (all nonspe-
cific to hosts), and particularly the odors emit-
ted by a fruiting tree (mainly but not exclu-
sively host specific) lead a foraging female to a
host plant (3, 10–12, 62). Light & Jang (101)
noted that there are three types of volatiles
that can draw females (or males) to a particular
habitat, patch, or single tree: (a) general (i.e.,
not tied to a particular plant species) “green
leaf volatiles” such as aliphatic aldehydes and
alcohols emitted by leaves and unripe fruit;
(b) volatiles, mainly esters, emitted by ripen-

ing fruit; and (c) male sexual pheromones,
volatiles emanating from rotting fruit, bac-
teria, and other food sources, and species-
specific volatiles emitted by the hosts of spe-
cialized fruit fly species. After alighting on a
plant, vision becomes more important, as fe-
males identify and approach individual fruit
according to their spherical shape, size, and
color (11, 131, 132). But importantly, if fruit
are not fully ripe (a stage of development pre-
ferred by most females to oviposit), there is
an interaction between chemical and visual
cues that helps the female orient herself while
moving from leaf to leaf or branch to branch
(11). While females are flying from leaf to leaf
(11) they apparently assess plant architecture,
leaf chemistry, or leaf physical properties (44).
Once on a fruit, females assess surface texture
and chemical properties with their tarsi and
decide to bore or not. If the decision is to
bore and the skin is pierced, sensors at the
tip of the aculeus (137) send the last series of
signals, allowing the female to reject the fruit
or to accept it and lay a batch of eggs. For
example, sugars such as glucose and fructose
(73) and protein (65) promote egg laying.

Factors that Influence Fruit Fly
Oviposition Behavior

A detailed description of the highly stereo-
typed oviposition pattern exhibited by most
pestiferous fruit fly species can be found in
Reference 7. In broad terms it involves ar-
rival on fruit, examination (head-butting), ac-
uleus insertion, egg deposition, aculeus clean-
ing, and in most species, aculeus dragging
(i.e., host marking) (Supplemental Video 1,
follow the Supplemental Material link from
the Annual Reviews home page at http://
www.annualreviews.org).

Some of the most important factors that
influence fruit fly oviposition behavior and
that might lead a female to lay eggs into
a fruit outside of its natural host range in
nature or in experiments under artificial,
laboratory conditions are host quality [i.e.,
size, color, penetrability, degree of ripeness,
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presence of host-marking pheromone
(HMP)] (41 and references therein), genetics
(i.e., variability within and between popula-
tions) (35, 69, 70), learning (122, 130, 147),
number of ovarioles (i.e., potential fecundity)
(59), ovarian dynamics [e.g., egg load and
concomitant oviposition drive (motivation),
ability to resorb oocytes, egg versus time limi-
tations] (4, 40, 59, 120), aculeus wear (92), age
(42), social context (facilitation, competition)
(46), chemical context (i.e., presence of fruit
volatiles and sexual pheromones) (4), and in-
dividual variation in oviposition decisions. Of
these factors, five in particular can play a criti-
cal role when conducting artificial, laboratory
tests: (a) ovarian dynamics and oviposition
drive (i.e., motivation), (b) learning, (c) age
and the concomitant aculeus wear in females,
(d ) social context, and (e) genetic and rearing
background (i.e., wild versus lab-reared flies)
of the particular population from which flies
are drawn to conduct bioassays (37).

With respect to ovarian dynamics, three
life-history components are worth highlight-
ing: (a) the relationship between the num-
ber of ovarioles (i.e., potential fecundity) and
breadth of host range, (b) the ability to re-
sorb oocytes, and (c) host use patterns with
respect to egg and time limitation. There
is a dynamic relationship between these fac-
tors and oviposition drive (i.e., motivation).
Fitt (59) reported that highly polyphagous
species within Anastrepha, Bactrocera, and Cer-
atitis had more ovarioles (higher lifetime fe-
cundity) than more specialized monophagous
and oligophagous congeners. Furthermore,
specialized species are usually able to resorb
oocytes and do so when deprived of their
preferred hosts (59). In contrast, oocyte re-
sorption has never been shown in highly
polyphagous species such as C. capitata, B. pa-
payae, B. tryoni, and A. ludens. It follows that
in general terms specialized species are egg
limited, whereas highly polyphagous species
are time limited. According to Papaj (120),
“egg limitation occurs when females de-
plete their egg supply before opportunities
to oviposit are exhausted . . . .Time limitation

occurs when females die or otherwise lose
reproductive competence before all mature
eggs have been laid.” The same author (120)
goes on to say that “a high risk of egg limita-
tion should cause females to become choosier
with respect to the quality of hosts used for
oviposition” and “a high risk of time limita-
tion should, in contrast, cause females to adopt
strategies that increase the rate at which hosts
are found, even if such strategies reduce the
quality of hosts on which eggs are laid.”

Because opportunistic generalists can uti-
lize many species as hosts (e.g., C. capitata),
the seasonal abundance of hosts and associ-
ated opportunities to lay eggs for these species
are higher than for monophagous species (2,
57, 58). But there is a trade-off between abun-
dance and predictability, in which the lat-
ter is higher for a specialist. As a result,
whereas the life cycles of specialist species
are synchronized with the fruiting phenology
of their hosts (183), in highly polyphagous
species that is not the case. Because highly
polyphagous species cannot resorb oocytes
and can in general terms be placed within
the time-limited, neurally constrained cate-
gories, when females are deprived of ovipo-
sition opportunities they accumulate eggs,
which in turn increases their drive (motiva-
tion) to lay eggs and lowers their preference
thresholds (“electivity” sensu Singer) (152).
That is, the probability of host acceptance in-
creases with time since last oviposition (see
Reference 88 for an in-depth discussion of
this relevant topic). Thus, it should come as
no surprise that a sexually mature C. capi-
tata, B. dorsalis, or A. ludens female, with a
high egg load, exposed to a fruit or veg-
etable not infested under natural field con-
ditions will readily oviposit into the novel
host (which would not happen with a highly
specialized species such as A. cordata or B.
cacuminata). Because larvae of many species
can develop in plants not used in nature, it
is likely that such an artificial setting can re-
sult in infested fruit. For example, as early as
1916, Back & Pemberton (15) documented ar-
tificial infestations (i.e., laboratory, not field
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conditions) in bananas by the Mediterranean
fruit fly and Baker et al. (16) documented in-
festations by A. ludens in bell peppers, toma-
toes, walnuts, and prickly pears (also see Sup-
plemental Figure 1, follow the Supplemental
Material link from the Annual Reviews home
page at http://www.annualreviews.org). As
discussed below, what we are actually achiev-
ing with such procedures is determining “the
absolute limits to an insect’s host range” ac-
cording to van Klinken (171).

Again, the elegant work by Fitt (59) il-
lustrates the above scenario. He showed that
when females were deprived of their preferred
hosts for up to 16 days prior to being assayed,
the specialists B. cacuminata, B. cucumis, and
B. jarvisi retained strong preferences for their
particular hosts. When B. cacuminata females
were deprived of their preferred host, they
did not accept any fruit outside their normal
host range. Although B. jarvisi females readily
accepted non-natural hosts when deprived of
their preferred host (Planchonia careya), they
did not increase the number of eggs laid
with increasing periods of deprivation, nor did
they accumulate oocytes (as was the case with
B. cacuminata and B. cucumis) (59). In sharp
contrast, females of the highly polyphagous
species B. tryoni did not resorb oocytes and
oviposited readily into a previously unaccept-
able fruit after only 4 days of host deprivation.
This author concluded that specialists differed
markedly from generalists in the physiologi-
cal control of oocyte maturation. Whereas in
B. tryoni there was “no inhibition of oocyte
development once the primary follicle had
matured,” in B. cacuminata, B. cucumis, and
B. jarvisi each ovariole contained only one
mature egg. According to Fitt (59), the high
egg load and concomitant change in behavior
associated with the increase in egg load ob-
served in B. tryoni is likely one of the factors
that explain why this species quickly accepts
non-natural or exotic hosts when deprived of
oviposition opportunities.

On occasion, environmental conditions
such as severe drought cause fruit trees to

abort fruit early, hinder fruit development
to the point where they never ripen, or
cause malformed fruit. If, under these cir-
cumstances, gravid females with a high egg
load exhibiting preadaptations and genetic
variance for hosts not used in nature (72)
oviposit into malformed (weakened) fruit or
fruit from species not previously considered
natural hosts, eggs may eclose and larvae may
develop into viable adults. Good examples of
the latter are the cases of Bactrocera xanthodes
infesting malformed ‘Candy Red’ watermel-
ons (Citrullus lanatus) in Tonga (159) and A.
ludens infesting ‘Rocoto/Manzano’ hot pep-
pers (Capsicum pubescens) in Veracruz, Mexico
(163). Field infestations by A. ludens in hot
peppers had never been formally reported and
were most likely the result of a severe drought
causing natural hosts (Citrus spp., Casimiroa
edulis, and Prunus persica) to be in short supply
or absent. Similarly, Aluja & Birke (2) showed
that when one of the preferred native hosts
of A. obliqua (Spondias purpurea) are grown ad-
jacent to an introduced host (Mangifera in-
dica ‘Manila’), the latter are not infested. Only
when the fruiting season of S. purpurea was
over did females of A. obliqua start infesting
mangos. Fitt (58) concluded that a large num-
ber of the host records for B. tryoni are based
on a small number of flies reared from par-
ticular fruits on only one occasion, which de-
spite being “suitable for larval development,
are nevertheless not normally preferred by
females except when alternatives are unavail-
able.” In sharp contrast, the strong discrimi-
nation of B. cacuminata against fruit other than
Solanum (57) represents a good example of ab-
solute discrimination (“when the probability
of acceptance of a particular plant species is
effectively zero and is not a function of an in-
sect’s motivational state,” 135).

An alternative explanation to unexpected
patterns of host use in the field involves the
possibility of associative learning. Papaj &
Prokopy (123) and others (139) have demon-
strated that individuals of many pestiferous
polyphagous species can learn and forget (i.e.,

480 Aluja · Mangan

A
nn

u.
 R

ev
. E

nt
om

ol
. 2

00
8.

53
:4

73
-5

02
. D

ow
nl

oa
de

d 
fr

om
 a

rj
ou

rn
al

s.
an

nu
al

re
vi

ew
s.

or
g

by
 U

.S
. D

ep
ar

tm
en

t o
f 

A
gr

ic
ul

tu
re

 o
n 

04
/2

3/
08

. F
or

 p
er

so
na

l u
se

 o
nl

y.



ANRV330-EN53-24 ARI 2 November 2007 18:52

can be reconditioned to accept fruit they
had previously rejected). As documented by
Prokopy et al. (130), in the apple maggot the
propensity to accept a particular fruit and re-
ject others is significantly influenced by recent
experience with that fruit.

In sum, host plant choice is not the result of
a simple behavior but rather it is the result of
a “dynamic hierarchy of several components”
(172). Host utilization can vary within an in-
sect species or within an individual in response
to changes in the internal physiological state
caused by a shortage of preferred hosts (151,
176) or by previous experience with hosts
(124). Changes in the internal physiological
state may modify preferences by altering the
perception of external cues (38) or the sen-
sitivity of peripheral receptors to a particu-
lar stimulus coincident with the increase in
egg load or by reducing thresholds for par-
ticular responses (151). Consequently, the lo-
cal host utilization patterns of polyphagous
insects, which exhibit preference hierarchies,
may vary according to the relative abundance
of potential alternative hosts when the pre-
ferred host is absent (67). This finding led
Fitt (57) to conclude that “the resistance of
varieties which rely solely on behavioral non-
preference may quickly be overcome when
cultivated extensively, if the pests become less
discriminating in the absence of more accept-
able cultivars.”

What happens when females of highly
polyphagous fruit fly species are kept in small,
crowded cages in the laboratory? If sexu-
ally mature females (particularly laboratory-
reared ones) are forcibly kept in cages with-
out an egg-laying substrate, their oviposition
drive gradually increases and, as time pro-
gresses, egg dumping commonly occurs. Fe-
males repeatedly attempt to bore into cage
walls (138) or stick their aculeus through the
screen covering the cage and eventually start
dumping eggs. The latter scenario occurs if fe-
males are not able to resorb oocytes, as is the
case for B. oleae (61). Furthermore, flies con-
tinuously kept at high densities in small cages

Physiological state:
the internal
condition of an
organism that
influences its
behavior

Antibiosis:
characteristics in
plants that inhibit
egg eclosion, larval
development, or
adult fitness

in the laboratory usually lose the ability to rec-
ognize fruit surface chemicals because their
tarsal receptors break or get blocked by fe-
ces and other substances such as food (usually
protein/sugar), or they lose sensitivity because
of low relative air humidity (157). If a fruit,
vegetable, or other object that is not a natu-
ral host is introduced into such a cage (e.g.,
radishes, string beans, strawberries, corn cob,
potatoes, or even a pin-pong ball), females will
readily accept it as an oviposition substrate
(Supplemental Figure 1 and Supplemental
Video 2, follow the Supplemental Material
link from the Annual Reviews home page at
http://www.annualreviews.org), which un-
der certain conditions may be an adequate
rearing medium from which a viable adult can
be produced (16).

HOST SUITABILITY AND THE
MECHANISMS USED BY FLIES
TO OVERCOME PLANT
DEFENSES

Host Plant Resistance to Fruit
Fly Attack

Despite the fact that commercially grown
fruit tends to be less toxic to mammals than
many wild species as a result of artificial selec-
tion (80), some fruit into which female fruit
flies deposit single eggs or egg masses exhibit
antibiosis, which according to Schoonhoven
et al. (144) “denotes reduced fecundity, size,
or longevity, and increased mortality of the
attacking insect.” Earlier, Torre-Bueno (166)
had defined “resistance factor” as “any con-
dition in plants that protects them from in-
sect infestation, including structures, chemi-
cal substances in the plant, or physiological
conditions.” For example, citrus resistance to
fruit fly attack has been attributed in part to
chemical characteristics of the peel (e.g., es-
sential oils, 5,7-dimethoxy-coumarin, linalool
in the flavedo; 78, 141) and to physical proper-
ties such as peel thickness (principally flavedo
thickness) and peel resistance to puncture
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Risk analysis: a
process driven by
epidemiological
principles through
which the risk of a
pest introduction
into any given area,
via a commercially
traded commodity, is
determined

(23, 76, 100). Linalool together with benzyl
isothiocyanate (BITC) in papayas helps repel
damage by B. dorsalis (148), and resins flow-
ing from ducts in the peel of mangos render
them partially resistant to the attack of various
fruit fly species (29, 90). Finally, in the case of
apples, total phenolic content apparently in-
fluences degree of resistance (126).

Importantly, there is a correlation be-
tween resistance and degree of fruit ripeness
(41, 76, 77). One of the best examples of
changes in host resistance during maturation
was described by Seo et al. (146, 148). In
‘Solo’ papaya orchards, these authors asso-
ciated maturation with infestation rates and
determined that BITC was correlated with
papaya ripeness and had inhibitory effects
on oviposition by C. capitata, B. dorsalis, and
B. cucurbitae.

An effective response to fruit fly eggs by
fruit is the formation of hardened calluses
around these eggs. These hardenings around
oviposition wounds have been reported for
Persea americana cv. ‘Sharwil’ and ‘Hass’ av-
ocados (3, 102), as well as for lemons (Citrus
limon) (156). Calluses in conjunction with re-
generating tissue (94) may cause egg mortality
by asphyxiation, since the eggs of many fruit
fly species require about five days to hatch
(1). In addition to callus formation, in the
case of certain cultivars of avocados and other
fruit species [e.g., lychees and longans (75)],
there is mechanical resistance (i.e., physical
barrier) exerted by the epicarp such that fe-
males of some species with short aculei (e.g.,
A. fraterculus, A. suspensa, C. capitata, and B.
dorsalis) cannot penetrate and as a result eggs
are left on the surface and quickly desiccate (8,
119). According to Jones (91) epicarp thick-
ness appears to be the primary host variable
responsible for influencing aculeus morphol-
ogy, rendering this character of interest for
risk analysis considerations.

Fruit (trees) weakened by disease or
drought partially lose their ability to quickly
form calluses or to regenerate damaged tis-
sue, and this could explain why a few larvae
are able to develop (3). Liquido et al. (102),

who worked with ‘Sharwil’ avocados, reported
increased susceptibility to fruit fly attack dur-
ing the dry season. Such findings support the
plant stress hypothesis, which postulates that
when plants are physiologically stressed, they
become more susceptible to attack by herbiv-
orous insects (details in Reference 127).

Mechanisms Used by Flies to
Overcome Fruit Resistance to Attack

One means to overcome resistance is to sim-
ply lay the eggs away from the toxic barrier,
as is the case with the Mexican fruit fly, a no-
torious pest of commercially grown citrus. A
comparison of the ovipositor sheath length
(an indirect measure of aculeus size) of other
citrus-infesting fruit fly species (e.g., C. capi-
tata and some members of the A. fraterculus
sibling species group) indicated that A. ludens
had the longest aculeus, allowing females to
lay eggs in the nontoxic albedo region and thus
avoid the toxic flavedo (23). The long aculeus
of A. ludens probably represents an adaptation
to ovipositing into the seeds of its ancestral
host plant Casimiroa greggii, also a Rutaceae
(9). In contrast, A. suspensa, C. capitata, and
South American populations of A. fraterculus
lay their eggs only in the flavedo region of
the grapefruit peel and cannot avoid toxic es-
sential oils, which cause high egg and larval
mortality (23, 76).

Females of A. ludens also facultatively ad-
just clutch size when encountering an inhos-
pitable medium for larval development. This
phenomenon was experimentally confirmed
by Dı́az-Fleischer & Aluja (41), who found
that females of this species oviposited larger
clutches in firm (unripe) versus soft (ripe)
hosts (‘Ataulfo’ mangos were used), a mecha-
nism that significantly increases larval survival
in unripe fruit. Alternatively, when a female
encounters a poor-quality host, it may reduce
the number of eggs laid in a particular plant or
can adjust the size or nutritional content of the
eggs (14). Yet another mechanism is exhibited
by females of primitive species such as A. cor-
data, which apparently probe the fruit until
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finding a route that circumvents the toxic
laticiferous canals of their latex-producing
host (9).

Effect of Cultivar and Time Elapsed
Since Harvest on the Degree of
Susceptibility to Fruit Fly Infestation

Ample evidence indicates that not all culti-
vars within a particular species of fruit are
equally susceptible to infestation (26), and
such information needs to be considered when
determining host plant status and calculat-
ing risk of fly introductions via infested fruit.
Pree (126) and Reissig et al. (136) (and ref-
erences therein) provided evidence that crab
apples and clones thereof (e.g., ‘Fuji’) were
completely resistant to the development of
R. pomonella larvae. Working with a species
within the A. fraterculus species complex that
has recently started to infest apples in South-
ern Brazil, Sugayama et al. (161) also found
that the ‘Fuji’ cultivar was the least infested
(11% versus 55% survival when compared
with the native hosts within the Myrtaceae).
Differential cultivar susceptibility to fruit fly
attack has also been shown in citrus (8 and ref-
erences therein, 100), guavas (133), and man-
gos (29, 83).

Egg eclosion and larval development/
survival differ, many times radically, in un-
picked versus picked fruit (3, 26). Larval mor-
tality is significantly greater in fruit naturally
attached to the tree compared with picked
fruit (3, 26), a phenomenon most likely re-
lated to the fact that fruit condition changes
substantially as soon as it is removed from the
tree (113, 167). The ability of flies to artifi-
cially infest picked fruit under laboratory con-
ditions is intimately related to the time since
harvest of the fruit used in bioassays, indicat-
ing that perhaps resistance mechanisms be-
come less efficient or cease to function. For
example, Oi & Mau (119) found that infesta-
tions ranging between 0% and 30% were ob-
tained from ‘Sharwil’ avocados exposed at 0–2
h postharvest but that the numbers increased
to 66.7%–100% at 3–7 h postharvest. Simi-

larly, Aluja et al. (3), found that ‘Hass’ avoca-
dos exposed under highly artificial conditions
to gravid A. ludens females 3 and 72 h posthar-
vest did not yield any larvae. In contrast, lar-
val development was observed (albeit in small
numbers) in fruit exposed 24 and 48 h posthar-
vest. Notably, none of the fruit exposed to
three other Anastrepha species (A. obliqua, A.
serpentina, and A. striata) yielded any larvae
(3). This shows that resistance mechanisms
are dynamic and can be species specific.

A STEPWISE APPROACH TO
EXPERIMENTALLY DETERMINE
FRUIT FLY HOST STATUS
INCORPORATING RISK
ANALYSIS CONSIDERATIONS
TO PROBLEM SOLVING

In this section we provide details on our pro-
posed flow diagram (Figure 1) and a se-
ries of definitions that will hopefully aid sci-
entists and regulatory officials in following
science-based decision-making processes with
respect to fruit fly/host plant designations.
Our scheme recognizes the pioneering work
by Willard et al. (177), who 78 years ago pro-
posed a stepwise approach similar to that of
Cowley et al. (36). Importantly, we propose
reversing the order of events by starting where
Willard et al. (177) and Cowley et al. (36) left
off, that is, in the field.

Our flow diagram (Figure 1) is based on
the fundamental aspects that drive host use
by insects and key life-history parameters dis-
cussed above (e.g., host breadth, number of
generations). We identify risk analysis and sys-
tems approach procedures to help strengthen
the host-designation protocol to minimize er-
rors in interpreting results (i.e., minimize the
possibility of false positive and false nega-
tive results) and to minimize the risk of ac-
cidental introductions into importing coun-
tries. Highly polyphagous, pestiferous fruit
fly species such as C. capitata, B. carambo-
lae, B. dorsalis, B. papayae, B. tryoni, A. ludens,
and A. suspensa should be considered prime
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candidates to be submitted to our experimen-
tal protocol.

Operational Definitions

We define a natural host as a fruit taxon
that has been unequivocally reported to
be infested under totally natural field con-
ditions (i.e., nothing is manipulated; de-
tails under “Guidelines for Reporting Fruit/
Vegetable Infestations by Fruit Flies in
Nature,” follow the Supplemental Material
link from the Annual Reviews home page
at http://www.annualreviews.org). A non-
natural host is a fruit taxon that has never been
unequivocally reported to be infested under
unmanipulated field conditions but has reli-
able experimental evidence that it could pro-
vide adequate properties to be infested and
produce reproductive adults under manipu-
lated (artificial) laboratory conditions.

These two host classes have been discussed
under a variety of terminologies (58, 114,
171) that incorporate the fundamental evo-
lutionary, behavioral, physiological, genetic,
and ecological underpinnings of host use dis-
cussed above: fundamental (conditional, po-
tential, artificial) = non-natural and realized
= natural host range. These concepts are de-
rived from the pioneering conceptualization
by Hutchinson (85) on the nature of the niche:
fundamental and realized niche, with Fitt (58)
being the first to introduce them into the fruit
fly literature. Fitt (58) defined fundamental
(he used the word “potential”) host range as
“the entire range of plants on which develop-
ment is possible and that will be influenced
largely by the physiological and morpholog-
ical adaptations of larvae which allow them
to utilize the available nutrients and detoxify
or avoid toxic secondary compounds.” More
recently, van Klinken (171) defined the fun-
damental host range as follows: “the absolute
limits to an insect’s host range, which cir-
cumscribe fundamental host range, are con-
strained by such factors as its metabolic and
sensory capabilities, physical limitations and
behavioral programming.” Fitt (58) defined

realized (i.e., natural) host range as “the actual
range of plants on which larval feeding occurs
which is influenced much more by the behav-
iors which allow adult females to locate, rec-
ognize and accept different plants for ovipo-
sition,” while van Klinken (171) defined the
term (under “field host range”) as “what actu-
ally happens in the field” or, in the words of
Hanson (79), “host plants are those on which
the animal completes normal development in
nature.” Van Klinken (171) goes on to state
that “under field conditions, the realized host-
range is frequently a subset of the fundamen-
tal host-range. That is, insects often accept or
use only a proportion of those that they are
capable of.”

Nechols et al. (114) indicated that the “fun-
damental host range” is genetically delim-
ited and that the realized host range “is con-
strained by environmental influences, which
include physical (e.g., geographic barriers, cli-
matic tolerance) and biological (e.g., competi-
tion, predation) factors.” For example, in the
case of a univoltine fruit fly, lack of coinci-
dence between adult emergence patterns (in
temperate regions driven mainly by diapause
schedules) and fruiting phenology will limit
the use of a host that is perfectly suitable for
larval development. An example of this sit-
uation providing quarantine security in cer-
tain regions has been described by Yokoyama
& Miller (180, 181) for the walnut husk fly
(Rhagoletis completa), which infests the wal-
nut Juglans regia. This species can infest cer-
tain stone fruits grown in the San Joaquin
Valley counties of California. However, these
stone fruits mature and are harvested before
the husk fly populations emerge, so the stone
fruits are effectively phenologically isolated
from the walnut husk fly pests (180).

As noted by van Klinken (171), the fun-
damental host range can be determined for
each developmental stage of the insect [e.g.,
egg, larva (each instar if necessary), pupae, and
adult] or for the life cycle of the insect. In the
case of adults, van Klinken notes that the con-
cept can be refined to the level of determining
the limitations (constraints) faced at each step
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in the catenary process of host finding and ac-
ceptance. The fundamental host concept can
be useful when comparing the ability to de-
velop in a potential or conditional host by sev-
eral species in one genus, as was the case with
the ‘Hass’ avocado and forced oviposition by
A. ludens, A. obliqua, A. serpentina, and A. stri-
ata females. Of these, only A. ludens larvae
reached the pupal stage, with no adult emerg-
ing from the undersized pupae (6). That is,
such a fruit would fall into the category of
fundamental or conditional/artificial host for
the egg and larval stages, but it would not be
part of the natural (realized) host range. We
believe that adopting the fundamental versus
realized host range concepts will allow regu-
latory and quarantine officials to decide, case
by case, the level of resolution required for
calculating sample sizes and risk (63).

For the sake of completeness in this re-
view, we note that Hennessey (82) pro-
posed host definitions for regulatory appli-
cations that fully coincide with our proposed
scheme: fruit fly nonhost, fruit fly host, con-
ditional fruit fly host, and conditional fruit fly
nonhost.

Field Surveys and the Need
for Accuracy When Reporting
Fruit/Vegetable Infestations
by Fruit Flies in Nature

Once we have given consideration to the fun-
damentals of host use by fruit flies and have
access to clearly stated operational definitions,
the next critical step is to gather credible in-
formation in the field based on past, cur-
rent, and future surveys. Such surveys allow
researchers to determine whether any given
fruit (or vegetable) is a natural host or not.
This dichotomy represents the crux of our
proposal.

Given that phytosanitary considerations
are frequently the major barriers to trade
in fresh fruit/vegetables, the need for accu-
racy in reporting fruit fly/host associations
(and expunging dubious records) has taken a
much more significant role in market access

than during periods prior to free-trade agree-
ments. It is thus critical that generic names
such as avocados, mangos, oranges, or ap-
ples be avoided in this context. For exam-
ple, many times authors do not refer to P.
americana but simply to “avocados” and al-
most never specify the expert plant taxonomist
who identified the Persea species and cultivar
they worked with or the expert fruit fly tax-
onomist who identified the fruit fly species in-
volved and kept voucher specimens. Consid-
ering that the genus Persea is divided into the
subgenera Persea and Eryodaphne, that world-
wide there are more than 85 species of Persea
(145), and that within P. americana there are
more than 500 cultivars (96) of West Indian,
Guatemalan, or Mexican origin (145), the
word “avocado” becomes meaningless, at least
in the context of fruit fly/host plant determi-
nation/designation. The same applies to man-
gos, oranges, apples, and many other fruit
species in which case there are also hundreds
of cultivars (142).

Furthermore, many times there is a prob-
lem with respect to the quantities of fruit that
were sampled and the degree of infestation
reported because there is a significant dif-
ference between one larvae/fly per fruit and
one larvae/fly per 10, 100, or 1000 pieces of
fruit (31, 63). For example, Uchôa & Zucchi
(169) collected 50 pieces of fruit of P. ameri-
cana in Mato Grosso, Brazil, weighing on av-
erage 17 g. From this sample, they recovered
120 adult flies (Tephritoidea), of which 82.5%,
16.7%, and 0.8% (one specimen) were uliids
(formerly otitids), flies in the genus Neosilba
(Lonchaeidae), and A. striata (Tephritidae),
respectively.

Finally, we need to eradicate the problem
caused by chains of citations referring to an
originally flawed report. For example, Rust
(140), who had no hard evidence whatsoever
[i.e., information provided was obtained from
a government list or based on supposed per-
sonal knowledge: “ . . . . following fruits which
the author knows to be infested . . . .” (italics
added)], has ever since been cited and recited
without any scrutiny [e.g., Costa-Lima (32)
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citing Rust (140) and then Blanchard (24) cit-
ing Costa-Lima (32), who in turn was cited
by Turica et al. (168) and so on]. Even more
damaging is that this misinformation ended
up in annotated host catalogs (174) and elec-
tronic host plant databases (115, 116) that
are used worldwide. Instead of legitimizing
such flawed records by incorporating them
into respectable databases, they should, in our
opinion, be expunged from the record or not
cited. We propose a series of strict guide-
lines for future natural host plant reports that
should help solve these types of problems (fol-
low the Supplemental Material link from the
Annual Reviews home page at http://www.
annualreviews.org).

Quarantine Treatments, Risk
Analysis, and Systems Approach
to Address Issues Related
to Natural Hosts

Once we have rigorously determined that a
particular fruit or vegetable is naturally in-
fested under unmanipulated field conditions,
and have provided adequate information on
the ecological context in which such infes-
tations occurred, a series of steps follow. In
the flow diagram (Figure 1) both the natu-
ral host and the non-natural host dichotomies
ultimately end with options that include ad-
ditional research, quarantine treatment, and
risk analysis and systems approach. For exam-
ple, continuing research is advisable to answer
questions such as the similarity of volatile pro-
files or contents of secondary metabolites in
different cultivars of a particular fruit species
infested in the field. Additionally, we need
to apply risk analysis, systems approach, and
quarantine treatment procedures should any
given country be interested in importing a cer-
tified natural fruit fly host. For example, a se-
ries of postharvest treatments have been ap-
proved by the USDA APHIS as quarantine
treatments (170), but these can vary depend-
ing on the particular circumstances or com-
mercial partners involved. Relevant reviews
of methods for achieving and evaluating quar-

antine security by quarantine treatments and
combinations of treatments and population
control, in connection with host status, can
be found in References 63, 64, 104, 106, 107,
125, and 150.

The purpose of regulatory quarantine ac-
tions is to prevent transport of infested com-
modities and to reduce the risk of introduc-
ing pests into pest-free areas. The term risk is
defined as the “probability that an outcome
will occur times the consequence or ‘level
of impact’ should that outcome occur” (93).
Regulatory agencies and international work-
ing groups have addressed the issue of risks as-
sociated with international trade of fresh com-
modities. A summary of agreements under
the International Plant Protection Conven-
tion (IPPC) has been reviewed by Devorshak
& Griffin (39). Documents published by the
IPPC that describe the standards for control-
ling spread and introduction of plant pests are
found in a series of International Standards for
Phytosanitary Measures (86).

The process of pest risk analysis for exotic
pests as trade issues is described in References
49–51. Devorshak & Griffin (39) summarize
this process as three stages: (a) initialization,
in which pests are identified as potential haz-
ards; (b) risk assessment stage, in which the
probability and consequences of establish-
ment are evaluated; and (c) risk management
stage, in which options for eliminating or re-
ducing pest risk are evaluated and recom-
mendations are developed. Problems with the
initialization stage can be due to unreliable
literature and taxonomic questions concern-
ing whether evaluations should be limited to a
specific cultivar or the plant species in general.
For the risk assessment stage, the issue of host
status for quarantine consideration has occa-
sionally been highly contentious. The type of
research proposed here will hopefully clarify
matters. However, this stage extends past the
issues of pest biology and many times involves
economic, social, and political considerations
that inevitably creep into the process of host
plant status designation. Dealing proactively
with these types of pressures is as important as
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determining the host status of a given
commodity following scientifically accept-
able methods because science-based decision-
making processes represent the only accept-
able mechanism to resolve any dispute on this
matter. Risk management returns options in-
cluding those covered by components of the
systems approach.

Oviposition Bioassays Under Forced,
Artificial Conditions

If there is credible information indicating
that a particular fruit or vegetable species or
cultivar is not naturally infested in the field
(Figure 1, non-natural host box), then a se-
ries of tests are needed to determine whether
sexually mature, gravid females will respond
to the volatiles and lay eggs into a particu-
lar fruit (considering such factors as fly con-
dition, degree of ripeness, cultivar, and eco-
logical context in which fruit is grown). We
also need to experimentally determine if the
commodity allows eggs to hatch and sustains
larval development, if such larvae are able to
pupate, and most importantly, if emerging
adults are able to reach sexual maturity and
produce viable progeny. In other words, to
determine the fundamental host range (171).
Note that any test under highly artificial con-
ditions inevitably entails the danger of elicit-
ing aberrant behaviors in flies (Supplemental
Figure 1 and Supplemental Video 2), po-
tentially leading investigators to reach flawed
conclusions at least from a biological and
regulatory perspective (i.e., false-positive and
false-negative results). The non-natural con-
ditions in these tests can lead to manipula-
tions such as early removal of larvae from
a poor host (requiring greater development
time than a preferred host), resulting in low
or failed pupation and lack of adult emergence
(false-negative results).

There are three approaches to forced, ar-
tificial oviposition bioassays: (a) field cages
or greenhouses covering entire fruit-bearing
trees (Figure 2a), (b) enclosed fruit-bearing
branches (3, 177) (Figure 2b), and/or (c)

a

b

c

Figure 2
(a) Field cage enclosing entire fruit-bearing guava tree, which is an ideal
experimental arena to conduct foraging behavior tests. (b) Fruit-bearing
branch (Mangifera indica ‘Manila’) enclosed by tulle screen into which fruit
fly females can be artificially released. (c) Plexiglas cage into which harvested
fruit have been introduced to conduct oviposition tests under highly
artificial laboratory conditions. Ideally, fruit should be naturally attached to
peduncle and branches should have foliage naturally attached to them.

wooden or Plexiglas cages containing har-
vested fruit (3, 177) (Figure 2c). We strongly
recommend avoiding tests with picked fruit
because, as noted above, fruit condition and
the volatile profile emitted by the fruit change
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radically as soon as it is removed from the tree
(113, 167). As a result, infestation records un-
der such highly artificial conditions contribute
only marginally to our understanding of the
biology of fruit fly host use and, most im-
portantly, contribute little to the process of
host plant status determination/designation
because such records only confirm that we are
dealing with an artificial host. Tests under the
first two approaches are run in the field, and
the last approach is usually run in the labo-
ratory, although cages can be placed in the
field under the shade of a tree. All tests can be
run under choice (i.e., known natural host plus
test commodity offered to females simulta-
neously) or no-choice conditions. Preferably
wild flies should be used, although on occa-
sion one needs to resort to laboratory-reared
insects as wild flies are not always available in
large enough numbers or when comparing the
performance of wild versus laboratory-reared
flies is of interest (see Reference 6 for further
details). For a review of potential problems
with choice or no-choice tests, we refer the
reader to References 108 and 165. Only the
first approach allows for detailed observations
on foraging behavior.

When females of polyphagous species, es-
pecially those reared in the laboratory, are
exposed to fruit under no-choice conditions
or even under choice conditions, particularly
in field enclosed, fruit-bearing branches or
in laboratory cages, they will lay eggs into
the test fruit (or vegetable), which allows
for the determination of larval development,
pupation, and adult emergence (and perfor-
mance). Oviposition activity under highly ar-
tificial conditions can be observed because
we have artificially bypassed critical distance
cues that a foraging female would use to de-
tect its host under field conditions. Many
times the eggs are laid into fruits that are
never infested in nature. In addition, females
will sometimes attempt to bore and lay eggs,
but are unable to do so because they cannot
puncture the epicarp of the fruit. As a re-
sult, eggs are only partially inserted or left
on the fruit surface, causing rapid desicca-

tion (a real limit of the fundamental host
range).

While running the battery of tests de-
scribed above, there are a series of critical
methodological considerations that need to be
taken into account (details in References 3, 8,
82, 108, 153, and 171). Owing to space restric-
tions we cannot address them here in detail.
Nevertheless, given their potential influence
on the outcome of bioassays, the follow-
ing factors should be adequately controlled:
(a) physiological and physical state of the in-
sect, in particular egg load and concomitant
level of motivation, degree of hunger (only
well-fed insects should be used), age (spread in
age classes of insects used in bioassays should
be reduced to a maximum of 5 days), low level
of wear or damage to critical structures (tip
of aculeus, antennal and/or tarsal receptors,
wings); (b) use of wild, wildish (i.e., wild geno-
type reared for a defined number of genera-
tions in natural hosts under laboratory con-
ditions), or laboratory-reared flies stemming
from a defined geographical region to sidestep
local adaptation issues; (c) degree of ripeness
of fruit, measured by dry matter or sugar con-
tent; (d ) health (vigor) of fruit-bearing tree;
(e) consideration of potential variability in
both the commodity and experimental fruit
fly populations over entire growing areas and
periods (details in Reference 82); ( f ) con-
sideration of differences among cultivars; ( g)
repetition of experiments during wet/dry or
warm/cold seasons that should be adequately
replicated. Furthermore, we suggest adopting
the definitions by Singer (153 and references
therein) for terms widely used in tests aimed
at determining host range or host status.

A number of experimental factors can af-
fect the outcome of artificial, laboratory or
caged tests in the field. For example, Oi &
Mau (119) demonstrated that tree-attached
‘Sharwil’ avocados could be infested by B.
dorsalis and C. capitata, whereas Armstrong
et al. (13) reported that no infestation by
these species occurred. Discussion by Oi &
Mau (119) identified differences in the num-
ber of females released [35 (119) versus 5
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females per cage (13)] and exposure time to the
fruit [3 days (119) versus 24 h (13)]. Methods
of holding and evaluating fruit can also vary
among tests. For example, Aluja et al. (3) re-
moved larvae from both ‘Hass’ avocados and
the preferred hosts (mango, sapodilla, guava,
and grapefruit) in their caged tree tests after
22 days (when fruit were totally rotten and
all living larvae had exited). In contrast, Ohto
et al. (118) showed that development time
(egg to adult) for cage-infested mangos and
grapefruit was 36 days and for their “avocado”
samples the development time was 52 days.
Bush (27) and Willard et al. (177) avoided
these problems by holding fruit until larvae
exited (as described in Reference 3) and then
holding pupae for adult emergence.

QUARANTINE TREATMENTS,
RISK ANALYSIS, AND SYSTEMS
APPROACH TO ADDRESS
ISSUES RELATED TO BOTH
CONDITIONAL AND NATURAL
HOSTS

Once oviposition bioassays are completed, the
following dichotomy will emerge: The insect
is or is not able to complete its life cycle. If the
insect cannot, then the commodity is labeled a
nonhost and what follows would be screening
every 15–20 years to detect mutations in fly
populations that would allow certain individ-
uals to develop in a fruit or vegetable (and
cultivars thereof ) previously unfit for it. If
the insect can complete its life cycle, then the
commodity is labeled a potential, conditional,
or artificial host. If such is the case, four pos-
sible routes emerge: (a) additional research to
determine degree of suitability, particularly in
the case of cultivars; (b) risk analysis including
pathway analysis; (c) development of quaran-
tine treatments, and (d ) consideration of the
economic and political impact of the possi-
ble importation of the commodity if there is
opposition by stakeholders but guaranteeing
that final rulings are science based and not
politically motivated. The issue of differen-
tial cultivar susceptibility is a contentious one

already prompting a ruling by a World Trade
Organization Dispute Panel in 1998. The rul-
ing came upon the request of U.S. plant pro-
tection authorities fending off requests by the
government of Japan that every single cultivar
of peach and tangerine be tested for effective-
ness of fumigation procedures as treatments
against the codling moth (178).

Baker et al. (17) developed a maximum pest
limit concept for determining the level of fruit
infestation that would be permitted for vari-
ous commodities combined with a posthar-
vest treatment. They based their detections
of infested fruit on the numbers of fruit cut
for inspections, but they did not consider the
accuracy of the inspection process (false neg-
atives with infested fruit not detected when
cut), which, as shown by Gould (74), can be
low (i.e., most fruit below 50% efficacy).

A series of other publications have ap-
proached methods of calculating inspection
requirements, distributions of pests among
fruit, and estimates of numbers of pests pass-
ing through ports of entry. Mangan et al.
(103), who used A. ludens infestation rates in
various citrus and mango cultivars from field
collections, showed that for unmanaged pop-
ulations, the infestation rate allowed infesta-
tion levels high enough so that in commercial
shipments even with the Probit 9 treatment,
more than two survivors would be introduced
and, using the equations of Couey & Chew
(34) to evaluate levels of inspection, large sam-
ples of fruit would have to be cut at ports of
entry to detect these survivors.

Yamamura (179) used infestation data from
Mangan et al. (103) to examine and predict
fruit inspection requirements for shipments
entering Japan. He assumed a beta distribu-
tion of pests among fruit rather than a Poisson
distribution, and although it was not shown
that this distribution is the best for this type
of calculation, it does address the non-Poisson
problem. Precision of the inspection system
(74) is also a crucial factor in Yamamura’s
system.

Follett & Hennessey (63) have recently
attempted to develop calculation criteria for
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determining confidence limits and sample
sizes for evaluating nonhost status. The calcu-
lation methods used by Couey & Chew (34),
Landolt et al. (97), and Baker et al. (17) applied
in this paper are all based on pests distributed
among fruit or commodity units as a Poisson
function. However, nearly all data for infes-
tation distributions among fruit show a neg-
ative binomial distribution, with the variance
in pests among fruit far exceeding the mean
(103).

Mangan & Sharp (106) corrected the equa-
tions of Seo et al. (147) to propose methods of
evaluating multiple quarantine treatments or
combinations of treatments, as not all com-
modities respond equally well. For exam-
ple, when Mangan et al. (107) tested quaran-
tine treatments for three citrus commodities
(grapefruit, ‘Valencia’ oranges, and ‘Dancy’
tangerines) using the identical A. ludens strain,
equipment, rearing facilities, and technicians,
they discovered that mortality models (Probit,
Logit, Cloglog) indicated that mortality dis-
tributions in the dose response tests differed
among the fruit types.

In many of the cases discussed above, espe-
cially Jang & Moffitt’s (89) proposal of the sys-
tems approach, the host status differences are
included as important components of infesta-
tion probability that can determine the num-
bers of pests entering a quarantined habitat.
Sequeira (149) has illustrated the pathway for
introduction of pests by movement of com-
modities and establishment of pests as a series
of components. In his expression, probability
of pest entry establishment includes the size of
the shipment, probabilities of fruit infestation
and pest surviving to the fruit harvest, pos-
sible selection of fruit at harvest, postharvest
treatment, mortality during packing (culling
of fruit) and shipment, and arrival in a suit-
able habitat and locating a suitable host under
suitable conditions in that habitat. Sequeira
(149) further notes that the pathway com-
ponents and their probability distributions
must have common units and be independent.
He therefore cautions against methods

that “simplistically combine” them into a
model.

Superficially, the use of a systems approach
to quarantine security would appear to have
lower security than a system of certifying pro-
ducers and having postharvest treatments. Re-
views of the literature, however, show that
importation systems having Probit 9 levels
have failed to prevent pest entry. Mangan &
Hallman (104) give several examples of heat
treatments that have failed to provide quaran-
tine security. Failures of fumigation systems,
though reported less frequently, also allow
fruit flies to survive. Perhaps the most con-
tentious recent failure was the finding of sur-
viving Mediterranean fruit flies in ‘Clemen-
tine’ oranges exported from Spain to the
United States (55). This failure occurred three
years after the massive, repeated outbreaks of
Mediterranean fruit flies in Florida, so pub-
lic attention was significant. The imposition
of a more rigorous systems approach, in ad-
dition to better regulation of the detection
programs and more efficient population con-
trol (105) and less costly eradication options
such as preventive sterile fly release programs
(48) operating in high-risk areas in Florida and
California and the area-wide fly-free area for
Mexican fruit fly in south Texas, suggests that
the newer multi-approach systems to stop en-
try of exotic fruit flies are indeed preventing
outbreaks that typified the 1990s. However, if
the regulatory combination of detection and
action are not vigilant against a pest species,
even monophagous fruit fly pests such as the
olive fruit fly (B. oleae) may enter and establish
populations.

CONCLUSIONS AND FUTURE
DIRECTIONS

This review was designed to provide a con-
ceptual basis and to link the biology of host
selection and utilization by fruit flies to ac-
tual protocols and interpretations for regu-
latory management. Fruit fly/host plant re-
lationships (designations) represent a highly
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complex phenomenon. Any effort to deter-
mine the host status of a particular commodity
and the potential risks to agriculture will be
strengthened if the problem is viewed from as
wide a perspective as possible and is solved by
rooting all experimental and technical proce-
dures in the biology and behavior of the fruit
fly species involved and by developing flexible
systems approaches applied on a case-by-case
basis. Figure 1 depicts recommended survey
and testing procedures along with feedback
loops for continuous monitoring that should
aid science-based decision-making processes
in the future.

How could the study of fruit fly/host plant
relationships be advanced in the future? In our
opinion, the only sensible route is to spon-
sor an uninterrupted effort aimed at gain-
ing deeper insight into the fundamentals that
drive host use by fruit flies because, as aptly
noted by Cowley et al. (36), “host status should
be regarded as a continuously evolving phe-
nomenon.” In this respect, we need to study
the genetic mechanisms underlying host use
by fruit flies along the lines outlined by Via

(172) for other herbivorous insects. For ex-
ample, we need to measure the overall genetic
variability in characters associated with host
use, identify loci associated with host prefer-
ence, study the possible inheritance of pref-
erence, and analyze the interaction between
genetic and environmental components possi-
bly constraining host expansion. A strong ge-
netic basis would in turn allow researchers to
study the physiological processes underlying
metabolic and behavioral responses to plant-
derived cues (adult flies) and allelochemicals
(larvae). In this respect, molecular approaches
to resistance (56) and the emerging field of nu-
trigenomics (33), coupled with recent discov-
eries on plant defense mechanisms (25), will
undoubtedly help us better understand and,
as a result, engineer host resistance to fruit
fly attack. For example, by investigating how
nutrition alters global gene expression pat-
terns, one could rapidly evaluate how insects
respond to various fruit, or discover the resis-
tance mechanisms exhibited by, for example,
P. americana ‘Hass’ when artificially infested
by A. ludens (3).

SUMMARY POINTS

1. Given the economic and political impact of the issue of host plant status determination
at the international level, here we present a conceptual and methodological framework
that can aid scientists, regulatory officials, policy makers, politicians, and stakeholders
in solving current and future disputes over the status of particular plants as fruit fly
hosts.

2. Fruit fly/host plant relationships represent a highly complex phenomenon. Any effort
to determine the host status of a particular commodity will be strengthened if the
problem is solved by rooting all experimental and technical procedures in the biology
of the fruit fly species involved and by developing flexible systems approaches applied
on a case-by-case basis.

3. Host plant choice is not the result of a simple behavior but rather represents a dynamic
hierarchy of several components. Host utilization can vary within an individual in
response to changes in internal physiological state (e.g., egg load) caused by a shortage
of preferred hosts or previous experience with hosts. Consequently, in the absence
of their preferred host, in polyphagous insects which exhibit preference hierarchies,
local host utilization patterns may vary according to the relative abundance of potential
alternative hosts.
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4. Some of the most important factors that influence fruit fly oviposition behavior and
that can potentially lead a female to lay eggs into a fruit outside of its natural host
range in nature or in experiments under artificial, laboratory conditions are: host
quality, genetics, learning, potential fecundity, ovarian dynamics (e.g., egg load and
concomitant oviposition drive, ability to resorb oocytes), aculeus wear, female age,
social context (e.g., presence of conspecifics), chemical context (i.e., presence of fruit
volatiles and sexual pheromones), and individual variation in oviposition decisions.

5. When analyzing fruit fly diet (host) breadth it is useful to treat it as a continuum
and continuously evolving phenomenon as there is great degree of variability among
individuals and populations of a particular species and also host ranges shrink and
expand over time. On the other hand, absolute limits can be also found with some
plants exhibiting complete resistance to infestation.

6. Among natural hosts (those found infested under totally natural field conditions) not
all are equally suitable for larval development and even among non-natural hosts, some
are acceptable under particular conditions (treated as conditional/potential/artificial
host in this review).

7. Host plant designations should be science based and not be tainted by politi-
cal/economic pressures by stakeholders.

8. Host status evaluations have been recognized as key factors in the systems approach
that incorporates “all pre- and postharvest factors affecting infestation and establish-
ment of pests into an integrated system to meet quarantine requirements (and thus
satisfy conditions of the pest risk analysis).”
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9. Aluja M, Piñero J, Jácome I, Dı́az-Fleischer F, Sivinski J. 2000. Behavior of flies in the
genus Anastrepha. See Ref. 7, pp. 375–406

10. Aluja M, Prokopy RJ. 1992. Host search behavior of Rhagoletis pomonella flies: intertree
movement patterns in response to wind-borne fruit volatiles under field conditions. Phys-
iol. Entomol. 17:1–8

11. Aluja M, Prokopy RJ. 1993. Host odor and visual stimuli interaction during intratree host
finding behavior of Rhagoletis pomonella flies. J. Chem. Ecol. 18:1299–311

12. Aluja M, Prokopy RJ, Buonaccorsi J, Cardé RT. 1993. Wind tunnel assays of olfactory
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